Trace mappings on quasi-Banach modulation spaces and applications to pseudo-differential operators of amplitude type
نویسندگان
چکیده
We deduce trace properties for modulation spaces (including certain Wiener-amalgam spaces) of Gelfand–Shilov distributions.We use these results to show that [Formula: see text]dos with amplitudes in suitable spaces, agree normal type whose symbols belong (other) spaces. In particular we extend earlier include quasi-Banach also apply our on Schatten-von Neumann and nuclear
منابع مشابه
wavelets, modulation spaces and pseudidifferential operators
مبحث تحلیل زمان-فرکانسی سیگنالها یکی از مهمترین زمینه های مورد بررسی پژوهشگران علوم ÷ایه کاربردی و فنی مهندسی میباشد.در این پایان نامه فضاهای مدولاسیون به عنوان زمینه اصلی این بررسی ها معرفی گردیده اند و نتایج جدیدی که در حوزه های مختلف ریاضی،فیزیک و مهندسی کاربرداساسی و فراوانی دارند استوار و بیان شده اند.به ویژه در این پایان نامه به بررسی و یافتن مقادیر ویژه عملگر های شبه دیفرانسیل با سمبل در...
Strong Convergence of the Iterations of Quasi $phi$-nonexpansive Mappings and its Applications in Banach Spaces
In this paper, we study the iterations of quasi $phi$-nonexpansive mappings and its applications in Banach spaces. At the first, we prove strong convergence of the sequence generated by the hybrid proximal point method to a common fixed point of a family of quasi $phi$-nonexpansive mappings. Then, we give applications of our main results in equilibrium problems.
متن کاملOn Anisotropic Triebel-lizorkin Type Spaces, with Applications to the Study of Pseudo-differential Operators
A construction of Triebel-Lizorkin type spaces associated with flexible decompositions of the frequency space R is considered. The class of admissible frequency decompositions is generated by a one parameter group of (anisotropic) dilations on R and a suitable decomposition function. The decomposition function governs the structure of the decomposition of the frequency space, and for a very par...
متن کاملTrace Ideals for Pseudo-differential Operators and Their Commutators with Symbols in Α-modulation Spaces
The fact that symbols in the modulation space M1,1 generate pseudo-differential operators of the trace class was first mentioned by Feichtinger and the proof was given by Gröchenig [12]. In this paper, we show that the same is true if we replace M1,1 by more general α-modulation spaces which include modulation spaces (α = 0) and Besov spaces (α = 1) as special cases. The result with α = 0 corre...
متن کاملModulation Spaces, Harmonic Analysis and Pseudo-differential Operators
The (classical) modulation spaces, as introduced by Feichtinger during the 80’s, consist of all tempered distributions whose short-time Fourier transforms (STFT) have finite mixed (weighted) Lebesgue norm. By choosing the Lebesgue parameters and weight functions in appropriate ways, one may quantify the degrees of asymptotic decay and singularity of the distributions in a ”detailed way”. A majo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analysis and Applications
سال: 2022
ISSN: ['1793-6861', '0219-5305']
DOI: https://doi.org/10.1142/s0219530522500063